Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PremisePteridophytes—vascular land plants that disperse by spores—are a powerful system for studying plant evolution, particularly with respect to the impact of abiotic factors on evolutionary trajectories through deep time. However, our ability to use pteridophytes to investigate such questions—or to capitalize on the ecological and conservation‐related applications of the group—has been impaired by the relative isolation of the neo‐ and paleobotanical research communities and by the absence of large‐scale biodiversity data sources. MethodsHere we present the Pteridophyte Collections Consortium (PCC), an interdisciplinary community uniting neo‐ and paleobotanists, and the associated PteridoPortal, a publicly accessible online portal that serves over three million pteridophyte records, including herbarium specimens, paleontological museum specimens, and iNaturalist observations. We demonstrate the utility of the PteridoPortal through discussion of three example PteridoPortal‐enabled research projects. ResultsThe data within the PteridoPortal are global in scope and are queryable in a flexible manner. The PteridoPortal contains a taxonomic thesaurus (a digital version of a Linnaean classification) that includes both extant and extinct pteridophytes in a common phylogenetic framework. The PteridoPortal allows applications such as greatly accelerated classic floristics, entirely new “next‐generation” floristic approaches, and the study of environmentally mediated evolution of functional morphology across deep time. DiscussionThe PCC and PteridoPortal provide a comprehensive resource enabling novel research into plant evolution, ecology, and conservation across deep time, facilitating rapid floristic analyses and other biodiversity‐related investigations, and providing new opportunities for education and community engagement.more » « lessFree, publicly-accessible full text available March 10, 2026
-
Abstract Grammitidoideae are the largest subfamily in Polypodiaceae and contain about 911 species. Progress has been made in understanding the overall phylogeny and generic boundaries in the light of recent molecular works. However, the majority of species, especially Asian species, and some critical type species of genera remain unsampled . In this study, a dataset of six plastid markers of 1003 (112 new) accessions representing ca. 412 species of Grammitidoideae including the type species of Ctenopterella , Grammitis , Moranopteris , Radiogrammitis , and Themelium , was assembled to infer a phylogeny. Our major results include: (1) the type species of Grammitis is successfully sequenced using a next‐generation sequencing technique and is resolved in Grammitis s.str. as expected; (2) Ctenopterella is found to be polyphyletic and a new clade consisting of C. khaoluangensis is resolved as sister to Tomophyllum ; (3) the type species of Ctenopterella is resolved in a clade sister to the C. lasiostipes clade; (4) Oreogrammitis is found to be polyphyletic and three clades outside of the core Oreogrammitis are identified containing O. subevenosa and allies, O. orientalis , and O. beddomeana (+ O. cf. beddomeana ); (5) Prosaptia is found to be paraphyletic with P. nutans being sister to a clade containing the rest of Prosaptia and Archigrammitis ; (6) the intergeneric and major relationships within the Asia‐Pacific clade are well resolved and strongly supported except for a few branches; (7) extensive cryptic speciation is detected in the Asia‐Pacific clade; and (8) based on the polyphyly of Ctenopterella we describe three new genera, Boonkerdia , Oxygrammitis , and Rouhania , for species formerly in Ctenopterella ; because the type species of Grammitis belongs to Grammitis s.str., we describe five new genera, Aenigmatogrammitis , Grammitastrum (stat. nov.), Howeogrammitis , Nanogrammitis , and Thalassogrammitis for species formerly in Grammitis s.l. A key to the 35 Old‐World genera is given, a taxonomic treatment is presented, and the morphology of all new genera is shown with either a color plate and/or a line drawing.more » « less
An official website of the United States government
